Answer:
[tex] \huge \red { \boxed{ \blue{ \boxed{ \tt \: x < - \frac{5}{2} }}}}[/tex]
Step-by-step explanation:
to understand this
you need to know about:
given:
- [tex] \text{4x + 6 < 2x + 1}[/tex]
to find:
tips and formulas:
the direction of inequality does not change
when you
- Add (or subtract) a number from both sides
- Multiply (or divide) both sides by a positive number
- Simplify a side
the direction of inequality does change
when you
- Multiply (or divide) both sides by a negative number
- Swapping left and right hand sides
let's solve:
[tex]step - 1 : define[/tex]
[tex]4x + 6 < 2x + 1[/tex]
[tex]step - 2 : solve \: for \: x[/tex]
- [tex] \tt{cancel \: 6\:from \: both \: sides} \\ \tt{4x + 6 - 6 < 2x + 1 - 6} \\ \tt 4x < 2x - 5[/tex]
- [tex] \tt cancel \: 2x \: from \: both \: sides \\ \tt 4x - 2x< 2x - 2x - 5 \\ \tt 2x < - 5[/tex]
- [tex] \tt divide \: both \: sides \: by \: 2 \\ \tt\frac{2x}{2} < \frac{ -5 }{2} \\ \tt x < - \frac{5}{2} [/tex]