Prove De Morgan's law by showing that each side is a subset of the other side by considering x ∈ A⎯⎯⎯ A ¯ ∩ B⎯⎯⎯ B ¯ .

Respuesta :

Solution :

We have to prove that [tex]$\overline{A \cup B} = \overline{A} \cap \overline{B}$[/tex]   (De-Morgan's law)

Let  [tex]$x \in \bar{A} \cap \bar{B}, $[/tex] then [tex]$x \in \bar{A}$[/tex] and [tex]$x \in \bar{B} $[/tex]

and so [tex]$x \notin \bar{A}$[/tex] and [tex]$x \notin \bar{B} $[/tex].

Thus, [tex]$x \notin A \cup B$[/tex] and so [tex]$x \in \overline{A \cup B}$[/tex]

Hence, [tex]$\bar{A} \cap \bar{B} \subset \overline{A \cup B}$[/tex]   .........(1)

Now we will show that [tex]$\overline{A \cup B} \subset \overline{A} \cap \overline{B}$[/tex]

Let [tex]$x \in \overline{A \cup B}$[/tex] ⇒ [tex]$x \notin A \cup B$[/tex]

Thus x is present neither in the set A nor in the set B, so by definition of the union of the sets, by definition of the complement.

[tex]$x \in \overline{A}$[/tex] and  [tex]$x \in \overline{B}$[/tex]

Therefore, [tex]$x \in \overline{A} \cap \overline{B}$[/tex] and we have [tex]$\overline{A \cup B} \subset \overline{A} \cap \overline{B}$[/tex]  .............(2)

From (1) and (2),

[tex]$\overline{A \cup B} = \overline{A} \cap \overline{B}$[/tex]

Hence proved.