Respuesta :

Given:

In a right angled triangle ABC the perpendicular and the base measure 3 cm.

To find:

The hypotenuse and three trigonometric ratios.

Solution:

Pythagoras theorem:

[tex]Hypotenuse^2=Perpendicular^2+Base^2[/tex]

Use Pythagoras theorem in triangle ABC.

[tex]Hypotenuse^2=(3)^2+(3)^2[/tex]

[tex]Hypotenuse^2=9+9[/tex]

[tex]Hypotenuse=\sqrt{18}[/tex]

[tex]Hypotenuse=3\sqrt{2}[/tex]

The three trigonometric ratios are

[tex]\sin \theta=\dfrac{Perpendicular}{Hypotenuse}[/tex]

[tex]\sin \theta=\dfrac{3}{3\sqrt{2}}[/tex]

[tex]\sin \theta=\dfrac{1}{\sqrt{2}}[/tex]

Similarly,

[tex]\cos \theta=\dfrac{Base}{Hypotenuse}[/tex]

[tex]\cos \theta=\dfrac{3}{3\sqrt{2}}[/tex]

[tex]\cos \theta=\dfrac{1}{\sqrt{2}}[/tex]

And,

[tex]\tan \theta=\dfrac{Perpendicular}{Base}[/tex]

[tex]\tan \theta=\dfrac{3}{3}[/tex]

[tex]\tan \theta=1[/tex]

Therefore, the hypotenuse is [tex]3\sqrt{2}[/tex] cm and three trigonometric ratios are [tex]\sin \theta=\dfrac{1}{\sqrt{2}}, \cos \theta=\dfrac{1}{\sqrt{2}}, \tan \theta=1[/tex].