Answer:
an expression equivalent to f(2x) + [tex]3\frac{g(x)}{h(x)}[/tex] + 3 = 8x³ + [tex]\frac{27}{2}x[/tex] + 3
Step-by-step explanation:
As given ,
f(x) = x³ , g(x) = 9 , h(x) = 2x
Now,
f(2x) = (2x)³ = 2³.x³ = 8x³
⇒f(2x) = 8x³
Now,
[tex]\frac{g(x)}{h(x)} = \frac{9}{2x} = \frac{9}{2}x[/tex]
⇒[tex]3\frac{g(x)}{h(x)} = 3.\frac{9}{2}x = \frac{27}{2}x[/tex]
∴ we get
f(2x) + [tex]3\frac{g(x)}{h(x)}[/tex] + 3 = 8x³ + [tex]\frac{27}{2}x[/tex] + 3