Answer:
A
Step-by-step explanation:
We are given:
[tex]\cos(22f-1)=\sin(7f+4)[/tex]
Recall the co-function identity:
[tex]\sin(\theta)=\cos(90-\theta)[/tex]
Let θ = 7f + 4. So:
[tex]\sin(7f+4)=\cos(90-(7f+4))[/tex]
Substitute:
[tex]\cos(22f-1)=\cos(90-(7f+4))[/tex]
Remove the cosine:
[tex]\displaystyle 22f-1=90-(7f+4)[/tex]
Distribute:
[tex]22f-1=90-7f-4[/tex]
Subtract:
[tex]22f-1=-7f+86[/tex]
Add 7f and 1 to both sides:
[tex]29f=87[/tex]
Therefore:
[tex]f=3[/tex]