Respuesta :

Answer:

A

Step-by-step explanation:

We are given:

[tex]\cos(22f-1)=\sin(7f+4)[/tex]

Recall the co-function identity:

[tex]\sin(\theta)=\cos(90-\theta)[/tex]

Let θ = 7f + 4. So:

[tex]\sin(7f+4)=\cos(90-(7f+4))[/tex]

Substitute:

[tex]\cos(22f-1)=\cos(90-(7f+4))[/tex]

Remove the cosine:

[tex]\displaystyle 22f-1=90-(7f+4)[/tex]

Distribute:

[tex]22f-1=90-7f-4[/tex]

Subtract:

[tex]22f-1=-7f+86[/tex]

Add 7f and 1 to both sides:

[tex]29f=87[/tex]

Therefore:

[tex]f=3[/tex]