Respuesta :

Given:

The system of equations is

[tex]y=2x-5[/tex]

[tex]2y-4x=?[/tex]

To find:

The missing value for which the given system of equations have infinitely many solutions.

Solution:

Let the missing value be k.

We have,

[tex]y=2x-5[/tex]

[tex]2y-4x=k[/tex]

Taking all the terms on the left side, the given equations can be rewritten as

[tex]-2x+y+5=0[/tex]

[tex]-4x+2y-k=0[/tex]

The system of equations [tex]a_1x+b_1y+c_1=0[/tex] and [tex]a_2x+b_2y+c_2=0[/tex] have infinitely many solutions if

[tex]\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}[/tex]

We have,

[tex]a_1=-2,b_1=1,c_1=5[/tex]

[tex]a_2=-4,b_2=2,c_2=-k[/tex]

Now,

[tex]\dfrac{-2}{-4}=\dfrac{1}{2}=\dfrac{5}{-k}[/tex]

[tex]\dfrac{1}{2}=\dfrac{1}{2}=\dfrac{5}{-k}[/tex]

[tex]\dfrac{1}{2}=\dfrac{5}{-k}[/tex]

On cross multiplication, we get

[tex]-k=10[/tex]

[tex]k=-10[/tex]

Therefore, the missing value is -10.