Respuesta :

Answer:

[tex]x=10[/tex]

Step-by-step explanation:

We can use the Pythagorean Theorem:

[tex]a^2+b^2=c^2[/tex]

The two legs are x and (x + 14) and the hypotenuse is (x + 16). Therefore:

[tex](x)^2+(x+14)^2=(x+16)^2[/tex]

Expand:

[tex]\displaystyle x^2+(x^2+28x+196)=x^2+32x+256[/tex]

Combine like terms:

[tex]2x^2+28x+196=x^2+32x+256[/tex]

Subtract the right from the left:

[tex](2x^2+28x+196)-(x^2+32x+256)=0[/tex]

Subtract:

[tex]x^2-4x-60=0[/tex]

Factor:

[tex](x-10)(x+4)=0[/tex]

Zero Product Property:

[tex]x-10=0\text{ or } x+4=0[/tex]

Solve:

[tex]\displaystyle x = 10 \text{ or } x = -4[/tex]

The x cannot be negative since a side cannot measure -4. So, our only answer is:

[tex]x=10[/tex]

So, the legs are 10 and 24 with the hypotenuse being 26.