Respuesta :

Given:

Consider the quadratic function is

[tex]y=a(x-h)^2+k[/tex]

With given vertex (5,8) and given point (1,3).

To find:

The equation of quadratic function.

Solution:

The quadratic function is

[tex]y=a(x-h)^2+k[/tex]               ...(i)

Where, (h,k) is the vertex and a is a constant.

Vertex is (5,8). So,

[tex](5,8)=(h,k)[/tex]

[tex]h=5,k=8[/tex]

Putting [tex]h=5,k=8[/tex] in (i), we get

[tex]y=a(x-5)^2+8[/tex]           ...(ii)

The given point is (1,3). Putting x=1 and y=3 in  (ii), we get

[tex]3=a(1-5)^2+8[/tex]

[tex]3-8=a(-4)^2[/tex]

[tex]-5=16a[/tex]

[tex]-\dfrac{5}{16}=a[/tex]

Putting [tex]a=-\dfrac{5}{16}[/tex] in (ii), we get

[tex]y=-\dfrac{5}{16}(x-5)^2+8[/tex]

Therefore, the required quadratic function is [tex]y=-\dfrac{5}{16}(x-5)^2+8[/tex].