Respuesta :

Answer:

JL = 12.5

Step-by-step explanation:

[tex] In\: \triangle JKL, KM\perp JL[/tex]

Therefore, by geometric mean property:

[tex] KM^2 = JM\times ML[/tex]

[tex] 6^2 = 8\times ML[/tex]

[tex] 36 = 8\times ML[/tex]

[tex] \frac{36}{8} = ML[/tex]

[tex]ML= 4.5 [/tex]

JL = JM +ML

JL = 8 + 4.5

JL = 12.5