Respuesta :

Answer:

[tex]\displaystyle \sin\Big(\frac{x}{2}\Big) = \frac{7\sqrt{58} }{ 58 }[/tex]

[tex]\displaystyle \cos\Big(\frac{x}{2}\Big)=-\frac{3 \sqrt{58}}{58}[/tex]

[tex]\displaystyle \tan\Big(\frac{x}{2}\Big)=-\frac{7}{3}[/tex]

Step-by-step explanation:

We are given that:

[tex]\displaystyle \sin(x)=-\frac{21}{29}[/tex]

Where x is in QIII.

First, recall that sine is the ratio of the opposite side to the hypotenuse. Therefore, the adjacent side is:

[tex]a=\sqrt{29^2-21^2}=20[/tex]

So, with respect to x, the opposite side is 21, the adjacent side is 20, and the hypotenuse is 29.

Since x is in QIII, sine is negative, cosine is negative, and tangent is also negative.

And if x is in QIII, this means that:

[tex]180<x<270[/tex]

So:

[tex]\displaystyle 90 < \frac{x}{2} < 135[/tex]

Thus, x/2 will be in QII, where sine is positive, cosine is negative, and tangent is negative.

1)

Recall that:

[tex]\displaystyle \sin\Big(\frac{x}{2}\Big)=\pm\sqrt{\frac{1 - \cos(x)}{2}}[/tex]

Since x/2 is in QII, this will be positive.

Using the above information, cos(x) is -20/29. Therefore:

[tex]\displaystyle \sin\Big(\frac{x}{2}\Big)=\sqrt{\frac{1 + 20/29}{2}[/tex]

Simplify:

[tex]\displaystyle \sin\Big(\frac{x}{2}\Big)=\sqrt{\frac{49/29}{2}}=\sqrt{\frac{49}{58}}=\frac{7}{\sqrt{58}}=\frac{7\sqrt{58}}{58}[/tex]

2)

Likewise:

[tex]\displaystyle \cos \Big( \frac{x}{2} \Big) =\pm \sqrt{ \frac{1+\cos(x)}{2} }[/tex]

Since x/2 is in QII, this will be negative.

Using the above information, cos(x) is -20/29. Therefore:

[tex]\displaystyle \cos \Big( \frac{x}{2} \Big) =-\sqrt{ \frac{1- 20/29}{2} }[/tex]

Simplify:

[tex]\displaystyle \cos\Big(\frac{x}{2}\Big)=-\sqrt{\frac{9/29}{2}}=-\sqrt{\frac{9}{58}}=-\frac{3}{\sqrt{58}}=-\frac{3\sqrt{58}}{58}[/tex]

3)

Finally:

[tex]\displaystyle \tan\Big(\frac{x}{2}\Big) = \frac{\sin(x/2)}{\cos(x/2)}[/tex]

Therefore:

[tex]\displaystyle \tan\Big(\frac{x}{2}\Big)=\frac{7\sqrt{58}/58}{-3\sqrt{58}/58}=-\frac{7}{3}[/tex]