Respuesta :

Answer:

Step-by-step explanation:

1). [tex]2^{x^{2} +2x}=\frac{1}{2}[/tex]

  [tex]2^{x^{2} +2x}=2^{-1}[/tex]

  Comparing exponents on both the sides.

  x² + 2x = -1

  x² + 2x + 1 = 0

  (x + 1)² = 0

  x = -1

2). [tex]2^{x-3}=8^{x+1}[/tex]

  [tex]2^{x-3}=(2^{3})^{x+1}[/tex]

  [tex]2^{x-3}=(2)^{3(x+1)}[/tex]

  By comparing exponents,

  x - 3 = 3(x + 1)

  x - 3 = 3x + 3

  3x - x = 3 + 3

  2x = 6

  x = 3

3). [tex]\sqrt{a^{5-k}}=a^{3-k}[/tex]

   [tex]a^{\frac{5-k}{2}}=a^{3-k}[/tex]

   By comparing exponents,

   [tex]\frac{5-k}{2}=3-k[/tex]

   5 - k = 2(3 - k)

   5 - k = 6 - 2k

   2k - k = 6 - 5

    k = 1

4). [tex]3^{x+3}=27^{(2x+6)}[/tex]

    [tex]3^{x+3}=(3^3)^{2x+6}[/tex]

    [tex]3^{x+3}=(3)^{3(2x+6)}[/tex]

    By comparing exponents,

    x + 3 = 3(2x + 6)

    x + 3 = 6x + 18

    6x - x = 3 - 18

    5x = - 15

    x = -3

5). [tex]5^{x-2}=1[/tex]

    [tex]5^{(x-2)}=5^{0}[/tex]

    x - 2 = 0

    x = 2