Respuesta :

Answer:

[tex]V = 97.911in^3[/tex]

Step-by-step explanation:

Given

Shapes: Cube and Cone

Required

Determine the volume

First we calculate the volume of the cube

[tex]V_1 = l^3[/tex]

Where

l = side length = 5.1

[tex]V_1 = 5.1^3[/tex]

[tex]V_1 = 132.651[/tex]

Next, calculate the volume of the cone using:

[tex]V_2 = \frac{\pi r^2h}{3}[/tex]

Where

h = 5.1

[tex]r = \frac{1}{2} * Diameter[/tex]

[tex]r = \frac{1}{2} * 5.1[/tex]

[tex]r = 2.55[/tex]

So, we have:

[tex]V_2 = \frac{\pi r^2h}{3}[/tex]

[tex]V_2 = \frac{\pi * 2.55^2 * 5.1}{3}[/tex]

[tex]V_2 = \frac{22 * 2.55^2 * 5.1}{7*3}[/tex]

[tex]V_2 = \frac{729.5805}{21}[/tex]

[tex]V_2 = 34.74[/tex]

The volume of the figure is:

[tex]V=V_1 - V_2[/tex]

[tex]V_1 = 132.651[/tex]

[tex]V = 132.651 - 34.74[/tex]

[tex]V = 97.911in^3[/tex]