Helpppppppp meeeeeeeee

Answer:
[tex]V = 97.911in^3[/tex]
Step-by-step explanation:
Given
Shapes: Cube and Cone
Required
Determine the volume
First we calculate the volume of the cube
[tex]V_1 = l^3[/tex]
Where
l = side length = 5.1
[tex]V_1 = 5.1^3[/tex]
[tex]V_1 = 132.651[/tex]
Next, calculate the volume of the cone using:
[tex]V_2 = \frac{\pi r^2h}{3}[/tex]
Where
h = 5.1
[tex]r = \frac{1}{2} * Diameter[/tex]
[tex]r = \frac{1}{2} * 5.1[/tex]
[tex]r = 2.55[/tex]
So, we have:
[tex]V_2 = \frac{\pi r^2h}{3}[/tex]
[tex]V_2 = \frac{\pi * 2.55^2 * 5.1}{3}[/tex]
[tex]V_2 = \frac{22 * 2.55^2 * 5.1}{7*3}[/tex]
[tex]V_2 = \frac{729.5805}{21}[/tex]
[tex]V_2 = 34.74[/tex]
The volume of the figure is:
[tex]V=V_1 - V_2[/tex]
[tex]V_1 = 132.651[/tex]
[tex]V = 132.651 - 34.74[/tex]
[tex]V = 97.911in^3[/tex]