Respuesta :

Answer:

[tex]a = 8[/tex] and [tex]b = 2[/tex]

Step-by-step explanation:

Given

[tex]\sqrt[3]{x^{10}}[/tex]

[tex]x = -2[/tex]

Required

Express as: [tex]a\sqrt[3]{b}[/tex]

Substitute -2 for x in [tex]\sqrt[3]{x^{10}}[/tex]

[tex]\sqrt[3]{x^{10}} = \sqrt[3]{(-2)^{10}}[/tex]

[tex]\sqrt[3]{x^{10}} = \sqrt[3]{1024}[/tex]

Express 1024 as 2^10

[tex]\sqrt[3]{x^{10}} = \sqrt[3]{2^{10}}[/tex]

Apply law of indices:

[tex]\sqrt[3]{x^{10}} = \sqrt[3]{2^{9+1}}[/tex]

Apply law of indices: Split

[tex]\sqrt[3]{x^{10}} = \sqrt[3]{2^{9}*2^1}}[/tex]

[tex]\sqrt[3]{x^{10}} = \sqrt[3]{2^{9}} *\sqrt[3]{2^1}}[/tex]

[tex]\sqrt[3]{x^{10}} = \sqrt[3]{2^{9}} *\sqrt[3]{2}}[/tex]

[tex]\sqrt[3]{x^{10}} = 2^{9*\frac{1}{3}}} *\sqrt[3]{2}}[/tex]

[tex]\sqrt[3]{x^{10}} = 2^3 *\sqrt[3]{2}}[/tex]

[tex]\sqrt[3]{x^{10}} = 8\sqrt[3]{2}}[/tex]

By comparison:

[tex]a = 8[/tex] and [tex]b = 2[/tex]

Answer:

a=-8 and b=-2

Step-by-step explanation:

Edge