Respuesta :

Answer:

The equation of the straight line

  x - 24y + 38 =0

Step-by-step explanation:

Step(i):-

Given that x(t) = t²+1 ..(i)

        and y(t) = √1+t  ..(ii)

Differentiating equation(i) with respective to 't'

[tex]\frac{dx}{dt} = 2t[/tex]

Differentiating equation(ii) with respective to 't'

[tex]\frac{dy}{dt} = \frac{1}{2\sqrt{1+t} }[/tex]

Step(ii):-

The slope of the tangent

     [tex]m = \frac{dy}{dx} = \frac{\frac{dy}{dt} }{\frac{dx}{dt} } = \frac{\frac{1}{2\sqrt{1+t} } }{2t}[/tex]

    [tex]m =( \frac{dy}{dx} )_{t=3} = \frac{1}{4(3)\sqrt{1+3} }[/tex]

    [tex]m = \frac{1}{24}[/tex]

Step(iii):-

Point   x = t²+1 = 3²+1 = 10

          y = √1+t =√1+3 = √4 =2

The point on the tangent line is ( 10 ,2)

The equation of the straight line

      [tex]y - y_{1} = m( x-x_{1} )[/tex]

     [tex]y - 2 = \frac{1}{24} ( x-10 )[/tex]

   24 (y-2) = x-10

   24y - 48 = x-10

    x - 24 y -10 +48 =0

   x - 24y + 38 =0

Final answer:-

The equation of the straight line

  x - 24y + 38 =0