Respuesta :
Answer:
a) W = 1.63 10⁻²⁸ J, b) W = 1.407 10⁻²⁷ J, c) W = 1.68 10⁻²⁸ J,
d) W = - 4.93 10⁻²⁸ J
Explanation:
a) In this problem we have an electron at the origin, work is requested to carry another electron from infinity to the point x₂ = 0, y₂ = 2.00m
If we use the law of conservation of energy, work is the change in energy of the system
W = ΔU = U_∞ -U
the potential energy for point charges is
U =k [tex]\sum \frac{q_i q_j}{r_{ij} }[/tex]
in this case we only have two particles
U = k [tex]\frac{q_1q_2}{r_{12} }[/tex]
the distance is
r₁₂ = [tex]\sqrt{(x_2-x_1)^2 + ( y_2-y_1)^2 }[/tex]
r₁₂ =[tex]\sqrt{ 0 + ( 2-0)^2}[/tex]Ra 0 + (2-0)
r₁₂ = √2= 1.4142 m
we substitute
W = k \sum \frac{q_i q_j}{r_{ij} }
let's calculate
W = [tex]\frac{ 9 \ 10^9 (1.6 \ 10^{-19})^2 }{1.4142}[/tex] 9 109 1.6 10-19 1.6 10-19 / 1.4142
W = 1.63 10⁻²⁸ J
b) the two electrons are fixed, what is the work to bring another electron to x₃ = 3.00 m y₃ = 0
in this case we have two fixed electrons
U = k [tex]( \frac{q_1q_3}{r_{13} } + \frac{q_2q_3}{r_{23} } )[/tex]
in this case all charges are electrons
q₁ = q₂ = q₃ = q
W = U = k q² [tex]( \frac{1}{r_{13} } + \frac{1}{r_{23} } )[/tex]
the distances are
r₁₃ = [tex]\sqrt{(3-0)^2 + 0}[/tex]RA (3.00 -0) 2 + 0
r₁₃ = 3
r₂₃ = [tex]\sqrt{ 3^2 + 2^2}[/tex]Ra (3 0) 2 + (2 0) 2
r₂₃ = √13
r₂₃ = 3.606 m
let's look for the job
W = U
let's calculate
W =[tex]{9 \ 10^3 ( 1.6 10^{-19})^2 }({\frac{1}{3} + \frac{1}{3.606} } )[/tex]
W = 1.407 10⁻²⁷ J
c) the three electrons are fixed, we bring the four electron to x₄ = 3.00m,
y₄ = 4.00 m
W = U = k [tex]( \frac{q_1q_4}{r_{14 }} + \frac{q_2q_4}{r_{24} } + \frac{q_3q_4}{r_{34} } )[/tex]
all charges are equal q₁ = q₂ = q₃ = q₄ = q
W = k q² [tex](\frac{1}{r_{14} } + \frac{1}{r_{24} } + \frac{1}{r_{34} } )[/tex]
let's look for the distances
r₁₄ = [tex]\sqrt{3^2 +4^2}[/tex]
r₁₄ = 5 m
r₂₄ = [tex]\sqrt{3^2 + ( 4-2)^2}[/tex]
r₂₄ = √13 = 3.606 m
r₃₄ = [tex]\sqrt{(3-3)^2 + (4-0)^2}[/tex]
r₃₄ = 4 m
we calculate
W = 9 10⁹ (1.6 10⁻¹⁹)² [tex]( \frac{1}{5} + \frac{1}{3.606} + \frac{1}{4} )[/tex]
W = 1.68 10⁻²⁸ J
d) we take the proton to the location x5 = 1m y5 = 1m
W = U = k [tex]( \frac{q_1q_5}{r_{15} } + \frac{q_2q_5}{r_{25} } + \frac{q_3q_5}{r_{35} } + \frac{q_4q_5}{r_{45} } )[/tex]
in this case the charges have the same values but charge 5 is positive and the others negative, so the products of the charges give a negative value
W = - k q² [tex]( \frac{1}{r_{15} } + \frac{1}{r_{25} } + \frac{1}{r_{35} } + \frac{1}{r_{45} } )[/tex]
we look for distances
r₁₅ = [tex]\sqrt{ 1^2 +1^2}[/tex]Ra (1-0) 2 + (1-0) 2
r₁₅ = √ 2 = 1.4142 m
r₂₅ = [tex]\sqrt{ (2-1)^2 +1^2}[/tex]
r₂₅ = √2 = 1.4142 m
r₃₅ = [tex]\sqrt{ ( 3-1)^2 +1^2}[/tex]
r₃₅ = √5 = 2.236 m
r₄₅ = [tex]\sqrt{ (3-1)^2 + (4-1)^2}[/tex]
r₄₅ = √13 = 3.606 m
we calculate
W = - 9 10⁹ (1.6 10⁻¹⁹)² [tex]( \frac{1}{1.4142} +\frac{1}{1.4142} + \frac{1}{2.236} + \frac{1}{3.606} )[/tex]
W = - 4.93 10⁻²⁸ J