Answer:
The stress in section AB is 31.8 Mpa
The stress in section BC is 56.6 Mpa
Explanation:
P.S - The exact question is -
As given,
[tex]P_{A}[/tex] = 10 KN , [tex]P_{B}[/tex] = 10 KN
d = 20 m for AB
d = 15 m for BC
Area of AB = [tex]\frac{\pi }{4} (d)^{2} = \frac{\pi }{4} (20)^{2} = \frac{\pi }{4} (400) = 100\pi[/tex]
Now,
Stress in AB = [tex]\frac{P_{A} }{Area} = \frac{10 KN}{100\pi } = \frac{10. 1000}{100\pi } = \frac{100}{\pi }[/tex] = 31.8 Mpa
Now,
Area in BC = = [tex]\frac{\pi }{4} (d)^{2} = \frac{\pi }{4} (15)^{2} = \frac{\pi }{4} (225) = 56.25\pi[/tex]
Now,
Stress in BC = [tex]\frac{P_{B} }{Area} = \frac{10 KN}{56.25\pi } = \frac{10. 1000}{56.25\pi } = \frac{178.4}{\pi }[/tex] = 56.6 Mpa