Answer:
the ball travelled approximately 60 m towards north before stopping
Explanation:
Given the data in the question;
First course : [tex]a_{x}[/tex] = 0.75 m/s², [tex]d_{x}[/tex] = 20 m, [tex]u_{x}[/tex] = 10 m/s
now, form the third equation of motion;
v² = u² + 2as
we substitute
[tex]v_{x}[/tex]² = (10)² + (2 × 0.75 × 20)
[tex]v_{x}[/tex]² = 100 + 30
[tex]v_{x}[/tex]² = 130
[tex]v_{x}[/tex] = √130
[tex]v_{x}[/tex] = 11.4 m/s
for the Second Course:
[tex]u_{y}[/tex] = 11.4 m/s, [tex]a_{y}[/tex] = -1.15 m/s², [tex]v_{y}[/tex] = 0
Also, form the third equation of motion;
v² = u² + 2as
we substitute
0² = (11.4)² + (2 × (-1.15) × [tex]d_{y}[/tex] )
0 = 129.96 - 2.3[tex]d_{y}[/tex]
2.3[tex]d_{y}[/tex] = 129.96
[tex]d_{y}[/tex] = 129.96 / 2.3
[tex]d_{y}[/tex] = 56.5 m
so;
|d| = √( [tex]d_{x}[/tex]² + [tex]d_{y}[/tex]² )
we substitute
|d| = √( (20)² + (56.5)² )
|d| = √( 400 + 3192.25 )
|d| = √( 3592.25 )
|d| = 59.9 m ≈ 60 m
Therefore, the ball travelled approximately 60 m towards north before stopping