Respuesta :
Answer:
C) y = -ln(-eˣ + 5)
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality
Algebra I
- Function Notation
- Exponential Rule [Multiplying]: [tex]\displaystyle b^m \cdot b^n = b^{m + n}[/tex]
- Exponential Rule [Rewrite]: [tex]\displaystyle b^{-m} = \frac{1}{b^m}[/tex]
Algebra II
- Log Properties
- Natural log ln(x) and eˣ
Calculus
Antiderivatives - Integrals
Integration Constant C
U-Substitution
Slope Fields
- Solving Differentials
- Separation of Variables
Explanation:
Step 1: Define
[tex]\displaystyle \frac{dy}{dx} = e^{y + x} \\y(0) = -ln4[/tex]
Step 2: Rewrite
Separation of Variables. Get differential equation to a form where we can integrate both sides.
- [Differential Equation] Rewrite [Exponential Rule - Multiplying]: [tex]\displaystyle \frac{dy}{dx} = e^y \cdot e^x[/tex]
- [Diff Eq] Isolate x terms together [Multiplication Property of Equality]: [tex]\displaystyle dy = e^y \cdot e^x dx[/tex]
- [Diff Eq] Isolate y terms together [Division Property of Equality]: [tex]\displaystyle \frac{dy}{e^y} = e^x dx[/tex]
- [Diff Eq] Rewrite: [tex]\displaystyle \frac{1}{e^y} dy = e^x dx[/tex]
- [Diff Eq] Rewrite y [Exponential Rule - Rewrite]: [tex]\displaystyle e^{-y} dy = e^x dx[/tex]
Step 3: Integrate Pt. 1
- [Diff Eq] Integrate both sides [Equality Property]: [tex]\displaystyle \int {e^{-y}} \, dy = \int {e^x} \, dx[/tex]
Step 4: Identify Variables for U-Substitution
Set variables for u-sub for y.
u = -y
du = -dy
Step 5: Integrate Pt. 2
- [Integrals] Rewrite: [tex]\displaystyle -\int {-e^{-y}} \, dy = \int {e^x} \, dx[/tex]
- [Integrals] U-Substitution: [tex]\displaystyle -\int {e^u} \, du = \int {e^x} \, dx[/tex]
- [Integrals] eˣ integration: [tex]\displaystyle -e^u = e^x + C[/tex]
- [Integral Expression] Back-substitution: [tex]\displaystyle -e^{-y} = e^x + C[/tex]
Step 6: Solve Differential Equation Pt. 1
- [Int Exp] Divide -1 on both sides [Division Property of Equality]: [tex]\displaystyle e^{-y} = -e^x - C[/tex]
- [Int Exp] Natural log both sides (isolate y term) [Equality Property]: [tex]\displaystyle -y = ln(-e^x - C)[/tex]
- [Int Exp] Divide -1 on both sides [Division Property of Equality]: [tex]\displaystyle y = -ln(-e^x - C)[/tex]
This is our differential function.
Step 7: Solve Differential Equation Pt. 2
- [Diff Function] Substitute in given point: [tex]\displaystyle -ln4 = -ln(-e^0 - C)[/tex]
- [Diff Function] Evaluate exponent: [tex]\displaystyle -ln4 = -ln(-1 - C)[/tex]
- [Diff Function] Divide -1 on both sides [Division Property of Equality]: [tex]\displaystyle ln4 = ln(-1 - C)[/tex]
- [Diff Function] e both sides [Equality Property]: [tex]\displaystyle 4 = -1 - C[/tex]
- [Diff Function] Add 1 on both sides [Addition Property of Equality]: [tex]\displaystyle 5 = -C[/tex]
- [Diff Function] Divide -1 on both sides [Division Property of Equality]: [tex]\displaystyle -5 = C[/tex]
- [Diff Function] Rewrite: [tex]\displaystyle C = -5[/tex]
- [Diff Function] Substitute in Integration Constant C: [tex]\displaystyle y = -ln(-e^x - -5)[/tex]
- [Diff Function] Simplify: [tex]\displaystyle y = -ln(-e^x + 5)[/tex]
Topic: Calculus
Unit: Slope Fields
Book: College Calculus 10e