Use trigonometric identities to simplify each expression.
1/cot^2 (x) - 1/cos^2(x)

Answer:
- 1
Step-by-step explanation:
[tex]\frac{1}{\cot ^2\left(x\right)}-\frac{1}{\cos ^2\left(x\right)}\\\\\mathrm{Use\:the\:basic\:trigonometric\:identity}:\quad \frac{1}{\cos \left(x\right)}=\sec \left(x\right),\\\frac{1}{\cot ^2\left(x\right)}-\sec ^2\left(x\right)\\\\\mathrm{Use\:the\:basic\:trigonometric\:identity}:\quad \frac{1}{\cot \left(x\right)}=\tan \left(x\right),\\\tan ^2\left(x\right)-\sec ^2\left(x\right)\\\\=> \frac{\sin ^2\left(x\right)}{\cos ^2\left(x\right)}-\frac{1}{\cos ^2\left(x\right)}\\[/tex]
[tex]=> \frac{\sin ^2\left(x\right)-1}{\cos ^2\left(x\right)}\\\\=> -\frac{\cos ^2\left(x\right)}{\cos ^2\left(x\right)}\\=> - 1[/tex]
Hope that helps!
By using trigonometric identities, [tex]\frac{1}{cot^{2}(x) } -\frac{1}{cos^{2}(x) }[/tex] = -1
"Trigonometric identities are equations that relate to different trigonometric functions and are true for any value of the variable that is there in the domain."
Given expression
[tex]\frac{1}{cot^{2}(x) } -\frac{1}{cos^{2}(x) }[/tex]
We know the trigonometric identity
[tex]{cot^{2}(x) } =( \frac{sinx}{cosx})^{2}[/tex]
= [tex]\frac{1}{(\frac{cosx}{sinx} )^{2} } -\frac{1}{cos^{2}(x) }[/tex]
= [tex]\frac{sin^{2} (x)}{cos^{2}(x) } -\frac{1}{cos^{2}(x) }[/tex]
= [tex]\frac{sin^{2}(x)-1}{cos^{2}x }[/tex]
= [tex]\frac{-(1- sin^{2}(x))}{cos^{2}x }[/tex]
We know the trigonometric identity
[tex]sin^{2}(x) +cos^{2}(x) = 1[/tex]
= [tex]\frac{-(cos^{2}x)}{cos^{2}x }[/tex]
= -1
Hence, [tex]\frac{1}{cot^{2}(x) } -\frac{1}{cos^{2}(x) }[/tex] = -1
Learn more about trigonometric identities here
https://brainly.com/question/27341786
#SPJ2