Respuesta :

Answer:

- 1

Step-by-step explanation:

[tex]\frac{1}{\cot ^2\left(x\right)}-\frac{1}{\cos ^2\left(x\right)}\\\\\mathrm{Use\:the\:basic\:trigonometric\:identity}:\quad \frac{1}{\cos \left(x\right)}=\sec \left(x\right),\\\frac{1}{\cot ^2\left(x\right)}-\sec ^2\left(x\right)\\\\\mathrm{Use\:the\:basic\:trigonometric\:identity}:\quad \frac{1}{\cot \left(x\right)}=\tan \left(x\right),\\\tan ^2\left(x\right)-\sec ^2\left(x\right)\\\\=> \frac{\sin ^2\left(x\right)}{\cos ^2\left(x\right)}-\frac{1}{\cos ^2\left(x\right)}\\[/tex]

[tex]=> \frac{\sin ^2\left(x\right)-1}{\cos ^2\left(x\right)}\\\\=> -\frac{\cos ^2\left(x\right)}{\cos ^2\left(x\right)}\\=> - 1[/tex]

Hope  that  helps!

By using trigonometric identities,  [tex]\frac{1}{cot^{2}(x) } -\frac{1}{cos^{2}(x) }[/tex] = -1

What are trigonometric identities?

"Trigonometric identities are equations that relate to different trigonometric functions and are true for any value of the variable that is there in the domain."

Given expression

[tex]\frac{1}{cot^{2}(x) } -\frac{1}{cos^{2}(x) }[/tex]

We know the trigonometric identity

[tex]{cot^{2}(x) } =( \frac{sinx}{cosx})^{2}[/tex]

= [tex]\frac{1}{(\frac{cosx}{sinx} )^{2} } -\frac{1}{cos^{2}(x) }[/tex]                    

= [tex]\frac{sin^{2} (x)}{cos^{2}(x) } -\frac{1}{cos^{2}(x) }[/tex]

= [tex]\frac{sin^{2}(x)-1}{cos^{2}x }[/tex]

= [tex]\frac{-(1- sin^{2}(x))}{cos^{2}x }[/tex]

We know the trigonometric identity

[tex]sin^{2}(x) +cos^{2}(x) = 1[/tex]

= [tex]\frac{-(cos^{2}x)}{cos^{2}x }[/tex]

= -1

Hence, [tex]\frac{1}{cot^{2}(x) } -\frac{1}{cos^{2}(x) }[/tex] = -1

Learn more about trigonometric identities here

https://brainly.com/question/27341786

#SPJ2