Answer:
[tex]Area = 2 \sqrt{2}[/tex]
Step-by-step explanation:
Given
[tex]Length_1 = 2[/tex]
[tex]Length_2 = \sqrt{2^3}[/tex]
Required
Determine the area of the triangle
The given lengths represent the height and base length of the triangle.
So, the area is;
[tex]Area = \frac{1}{2} * Length_1 * Length_2[/tex]
Substitute values for Length1 and Length2
[tex]Area = \frac{1}{2} * 2 * \sqrt{2^3}[/tex]
[tex]Area = \frac{2}{2} * \sqrt{2^3}[/tex]
[tex]Area = 1* \sqrt{2^3}[/tex]
[tex]Area = \sqrt{2^3}[/tex]
Express 2^3 as 2 * 2 * 2
[tex]Area = \sqrt{2*2*2}[/tex]
[tex]Area = \sqrt{4*2}[/tex]
Split
[tex]Area = \sqrt{4} *\sqrt{2}[/tex]
[tex]Area = 2 *\sqrt{2}[/tex]
[tex]Area = 2 \sqrt{2}[/tex]