Jason and Alison are hiking in the woods when they spot a rare owl in a tree. Jason stops and measures an angle of elevation of 22°8'6''.

Respuesta :

Answer:

[tex]Owl= 67.14ft[/tex]

Step-by-step explanation:

See comment for complete question.

The given information is represented in the attached figure.

First convert 22°8'6'' and 30° 40’ 30” to degrees

[tex]22^{\circ} 8'6'' = 22 + \frac{8}{60} + \frac{6}{3600}[/tex]

[tex]22^{\circ} 8'6'' = 22.135^{\circ}[/tex]

[tex]30^{\circ} 40'30'' = 30 + \frac{40}{60} + \frac{30}{3600}[/tex]

[tex]30^{\circ} 40'30'' = 30.675^{\circ}[/tex]

Considering Jason's position:

[tex]tan(22.135^{\circ}) = \frac{H}{x + 48}[/tex]

Where x = distance between the tree and Alison

Make H the subject

[tex]H = (x + 48)tan(22.135^{\circ})[/tex]

Considering Alison's position

[tex]tan(30.675^{\circ}) = \frac{H}{x}[/tex]

Make H the subject

[tex]H = xtan(30.675^{\circ})[/tex]

[tex]H = H[/tex]

[tex](x + 48)tan(22.135^{\circ}) = xtan(30.675^{\circ})[/tex]

[tex](x + 48) *0.4068 = x* 0.5932[/tex]

Open bracket

[tex]x *0.4068 + 48 *0.4068 = 0.5932x[/tex]

[tex]0.4068x + 19.5264 = 0.5932x[/tex]

Collect Like Terms

[tex]-0.5932x+0.4068x = -19.5264[/tex]

[tex]-0.1864x = -19.5264[/tex]

[tex]0.1864x = 19.5264[/tex]

Make x the subject

[tex]x = \frac{19.5264}{0.1864}[/tex]

[tex]x = 104.76[/tex]

Substitute 104.76 for x in [tex]H = xtan(30.675^{\circ})[/tex]

[tex]H = 104.76 * tan(30.675^{\circ})[/tex]

[tex]H = 104.76 * 0.5932[/tex]

[tex]H = 62.14[/tex]

The above represents the height of the tree.

The height of the owl is:

[tex]Owl= H + 5[/tex]

[tex]Owl= 62.14 + 5[/tex]

[tex]Owl= 67.14ft[/tex]

Ver imagen MrRoyal