In the laboratory, a general chemistry student measured the pH of a 0.313 M aqueous solution of acetylsalicylic acid (aspirin), HC9H7O4 to be 2.031. Use the information she obtained to determine the Ka for this acid.

Respuesta :

Answer: [tex]K_a[/tex] for the acid is [tex]2.7\times 10^{-4}[/tex]

Explanation:

[tex]C_9H_7O_4H\rightarrow H^+C_9H_7O_4^-[/tex]

   c             0             0

[tex]c-c\alpha[/tex]        [tex]c\alpha[/tex]          [tex]c\alpha[/tex]  

So dissociation constant will be:

[tex]K_a=\frac{(c\alpha)^{2}}{c-c\alpha}[/tex]

Give c= 0.313 M and [tex]pH[/tex] = 2.031

[tex](\alpha)=0.030[/tex]

[tex][H^+]=c\times \alpha[/tex]

[tex][H^+]=0.500\times 0.030=0.015[/tex]

Also [tex]pH=-log[H^+][/tex]

[tex]2.031=-log[H^+][/tex]

[tex][H^+]=0.009[/tex]

[ [tex][H^+]=c\alpha[/tex]  

[tex]c\alpha=0.009[/tex]

Putting in the values we get:

[tex]K_a=\frac{(0.009)^2}{(0.313-0.009)}[/tex]

[tex]K_a=\frac{(0.009)^2}{(0.304)}=2.7\times 10^{-4}[/tex]

[tex]K_a[/tex] for the acid is [tex]2.7\times 10^{-4}[/tex]