Identify the reflection rule on a coordinate plane that verifies that triangle A(-1,7), B(6,5), C(-2,2) and A'(-1,-7), B'(6,-5), C'(-2,-2) triangle are congruent when reflected over the x-axis.

A) (x, y) → (-x, -y)
B) (x, y) → (x, -y)
C) (x, y) → (-x, y)
D) the triangles are not congruent

Respuesta :

Answer:

Option B is correct.

The reflection rule is followed here is,  [tex](x,y) \rightarrow (x, -y)[/tex].

Explanation:

Since, the triangle is reflected over the x-axis , then only y- coordinates will get changed but the x coordinates will remain the same.

[tex]A(-1,7) \rightarrow A'(-1,-7)[/tex]

[tex]B(6,5) \rightarrow B'(6,-5)[/tex]

[tex]C(-2,2) \rightarrow C'(-2,-2)[/tex]

Therefore, the only reflection rule on the coordinate plane that verifies the triangle are congruent when reflected over x-axis is, [tex](x,y) \rightarrow (x, -y)[/tex]


Answer:

Answer B

Step-by-step explanation: