Respuesta :
1) Molarity
M = n / V
n: number of moles of solute
V: volume of the solution in liters
n = mass / molar mass = 0.000333 g / 332.32 g / mol = 1*10 ^ - 6 moles
V = 225 ml * 1 liter / 1000 ml = 0.225 liter
M = 10^-6 mol / 0.225 liter = 0.00000444 M
2) ppm
ppm = parts per million
grams of solute: 0.000333 g
grams of solution = volume * density = 225 ml * 0.785 g / ml = 176.625 g
ppm = [0.00033 g / 176.625 g] * 1,000,000 = 1.868 ppm
M = n / V
n: number of moles of solute
V: volume of the solution in liters
n = mass / molar mass = 0.000333 g / 332.32 g / mol = 1*10 ^ - 6 moles
V = 225 ml * 1 liter / 1000 ml = 0.225 liter
M = 10^-6 mol / 0.225 liter = 0.00000444 M
2) ppm
ppm = parts per million
grams of solute: 0.000333 g
grams of solution = volume * density = 225 ml * 0.785 g / ml = 176.625 g
ppm = [0.00033 g / 176.625 g] * 1,000,000 = 1.868 ppm
The concentration of the solution in molarity and ppm is [tex]\boxed{{\text{0}}{\text{.00000445 M}}}[/tex] and [tex]\boxed{{\text{1}}{\text{.88 ppm}}}[/tex] respectively.
Further Explanation:
The proportion of substance in the mixture is called concentration. The most commonly used concentration terms are as follows:
1. Molarity (M)
2. Molality (m)
3. Mole fraction (X)
4. Parts per million (ppm)
5. Mass percent ((w/w) %)
6. Volume percent ((v/v) %)
Molarity is a concentration term that is defined as the number of moles of solute dissolved in one litre of the solution. It is denoted by M and its unit is mol/L.
The formula to calculate the molarity of the solution is as follows:
[tex]{\text{Molarity of solution}} = \frac{{{\text{Moles}}\;{\text{of}}\;{\text{solute}}}}{{{\text{Volume }}\left( {\text{L}} \right){\text{ of}}\;{\text{solution}}}}[/tex] …… (1)
The formula to calculate the moles of fluorescein is as follows:
[tex]{\text{Moles of fluorescein}} = \frac{{{\text{Given mass of fluorescein}}}}{{{\text{Molar mass of fluorescein}}}}[/tex] …… (2)
The given mass of fluorescein is 0.000333 g.
The molar mass of fluorescein is 332.32 g/mol.
Substitute these values in equation (2).
[tex]\begin{aligned}{\text{Moles of fluorescein}}&=\left( {{\text{0}}{\text{.000333 g}}} \right)\left( {\frac{{{\text{1 mol}}}}{{{\text{332}}{\text{.32 g}}}}} \right)\\&=0.000001002\;{\text{mol}} \\ \end{aligned}[/tex]
Substitute 0.000001002 for the moles of solute and 225 mL for the volume of solution in equation (2).
[tex]\begin{aligned}{\text{Molarity of solution}}&=\left( {{\text{0}}{\text{.000001002 mol}}} \right)\left( {\frac{1}{{{\text{225 mL}}}}} \right)\left( {\frac{{{\text{1 mL}}}}{{{\text{1}}{{\text{0}}^{ - 3}}{\text{ L}}}}} \right) \\&= {\text{0}}{\text{.0000044535 M}}\\&\approx{\text{0}}{\text{.00000445 M}} \\ \end{aligned}[/tex]
The molarity of the solution is 0.00000445 M.
The [tex]{\text{ppm}}[/tex] or parts per million is a concentration term equal to the mass of any substance divided by the mass of the solution, multiplied by [tex]{10^6}[/tex].
The formula to calculate the concentration of fluorescein in [tex]{\text{ppm}}[/tex] is as follows:
[tex]{ppm}} = \left( {\frac{{{\text{mass}}\;{\text{of fluorescein}}}}{{{\text{mass}}\;{\text{of}}\;{\text{solution}}}}} \right){10^6}[/tex] ...... (3)
The formula to calculate the density of the solution is as follows:
[tex]{\text{Density of solution}} = \frac{{{\text{Mass of solution}}}}{{{\text{Volume of solution}}}}[/tex] …… (4)
Rearrange equation (6) to calculate the mass of the solution.
[tex]{\text{Mass of solution}} = \left( {{\text{Density of solution}}} \right)\left( {{\text{Volume of solution}}} \right)[/tex] …… (5)
Substitute 225 mL for the volume of fluorescein and 0.785 g/mL for the volume of solution in equation (5).
[tex]\begin{aligned}{\text{Mass of solution}}&=\left({\frac{{{\text{0}}{\text{.785 g}}}}{{{\text{1 mL}}}}} \right)\left( {{\text{225 mL}}} \right)\\&=176.6{\text{25 g}} \\ \end{aligned}[/tex]
Substitute 0.000333 g for the mass of fluorescein and 176.625 g for the mass of solution in equation (3).
[tex]\begin{aligned}{\text{ppm}}&=\left( {\frac{{{\text{0}}{\text{.000333 g}}}}{{{\text{176}}{\text{.625 g}}}}} \right){10^6}\\&= 1.8853{\text{5 ppm}}\\&\approx {\text{1}}{\text{.88 ppm}} \\ \end{aligned}[/tex]
The concentration of the solution in ppm is 1.88 ppm.
Learn more:
1. Calculation of volume of gas: https://brainly.com/question/3636135
2. Determine the moles of water produced: https://brainly.com/question/1405182
Answer details:
Grade: Senior School
Subject: Chemistry
Chapter: Concentration terms
Keywords: molarity, fluorescein, solution, volume, density, ppm, 1.88 ppm, 0.00000445 M, moles of fluorescein, mass of fluorescein.