Respuesta :
Answer:
[tex]\displaystyle \frac{dy}{dx} = -4 \sin(x) \cos(x)[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = \cos(x) \sin(x)[/tex]
Step 2: Differentiate
- Derivative Rule [Product Rule]: [tex]\displaystyle y' = \frac{d}{dx}[\cos(x)] \sin(x) + \cos(x) \frac{d}{dx}[\sin(x)][/tex]
- Trigonometric Differentiation: [tex]\displaystyle y' = -\sin^2(x) + \cos^2(x)[/tex]
- Derivative Property [Addition/Subtraction]: [tex]\displaystyle y' = \frac{d}{dx}[-\sin^2(x)] + \frac{d}{dx}[\cos^2(x)][/tex]
- Rewrite [Derivative Property - Multiplied Constant]: [tex]\displaystyle y' = -\frac{d}{dx}[\sin^2(x)] + \frac{d}{dx}[\cos^2(x)][/tex]
- Basic Power Rule [Derivative Rule - Chain Rule]: [tex]\displaystyle y' = -2 \sin(x) \frac{d}{dx}[\sin(x)] + 2 \cos(x) \frac{d}{dx}[\cos(x)][/tex]
- Trigonometric Differentiation: [tex]\displaystyle y' = -2 \sin(x) \cos(x) - 2 \cos(x) \sin(x)[/tex]
- Simplify: [tex]\displaystyle y' = -4 \sin(x) \cos(x)[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation