Respuesta :

Space

Answer:

[tex]\displaystyle \frac{dy}{dx} = -4 \sin(x) \cos(x)[/tex]

General Formulas and Concepts:

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                          [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]

Derivative Property [Addition/Subtraction]:                                                         [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:                                                                             [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]

Derivative Rule [Chain Rule]:                                                                                 [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]

Step-by-step explanation:

Step 1: Define

Identify

[tex]\displaystyle y = \cos(x) \sin(x)[/tex]

Step 2: Differentiate

  1. Derivative Rule [Product Rule]:                                                                     [tex]\displaystyle y' = \frac{d}{dx}[\cos(x)] \sin(x) + \cos(x) \frac{d}{dx}[\sin(x)][/tex]
  2. Trigonometric Differentiation:                                                                       [tex]\displaystyle y' = -\sin^2(x) + \cos^2(x)[/tex]
  3. Derivative Property [Addition/Subtraction]:                                                 [tex]\displaystyle y' = \frac{d}{dx}[-\sin^2(x)] + \frac{d}{dx}[\cos^2(x)][/tex]
  4. Rewrite [Derivative Property - Multiplied Constant]:                                   [tex]\displaystyle y' = -\frac{d}{dx}[\sin^2(x)] + \frac{d}{dx}[\cos^2(x)][/tex]
  5. Basic Power Rule [Derivative Rule - Chain Rule]:                                       [tex]\displaystyle y' = -2 \sin(x) \frac{d}{dx}[\sin(x)] + 2 \cos(x) \frac{d}{dx}[\cos(x)][/tex]
  6. Trigonometric Differentiation:                                                                      [tex]\displaystyle y' = -2 \sin(x) \cos(x) - 2 \cos(x) \sin(x)[/tex]
  7. Simplify:                                                                                                         [tex]\displaystyle y' = -4 \sin(x) \cos(x)[/tex]

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation