Use the function below:

trig graph with points at 0, 2 and pi over 2, 5 and pi, 2 and 3 pi over 2, negative 1 and 2 pi, 2

What are the amplitude and midline?

Amplitude: 2; midline: y = 3
Amplitude: 1; midline: y = 3
Amplitude: 2; midline: y = 1
Amplitude: 3; midline: y = 2

Respuesta :

Correct answer is D.

[tex]y=A\sin{x}+B[/tex]
A - amplitude
y = B - midline

[tex]y=3\sin{x}+2[/tex]
Amplitude: 3; midline: y = 2

Answer:

The correct option is 4. Amplitude: 3; midline: y = 2

Step-by-step explanation:

The graph passing through the points (0,2), [tex](\frac{\pi}{2},5),(\pi,2),(\frac{3\pi}{2},-1),(2\pi,2)[/tex].

If a is maximum value and b is minimum value, then

[tex]Amplitude=\frac{a-b}{2}[/tex]

[tex]Midline=\frac{a+b}{2}[/tex]

The minimum value of the function is -1.

The maximum value of the function is 5.

[tex]Amplitude=\frac{5-(-1)}{2}=\frac{6}{2}=3[/tex]

The amplitude of the graph is 3.

[tex]Midline=\frac{5+(-1)}{2}=\frac{4}{2}=2[/tex]

The midline of the graph is y=2.

The general sine function is

[tex]f(x)=A\sin (Bx+C)+D[/tex]

Where, A is amplitude, 2π/B is period, C is phase shift and D is midline.

The required function is

[tex]f(x)=3\sin x+2[/tex]

Therefore correct option is 4.

Ver imagen DelcieRiveria