Respuesta :
The correct answer is option C : 0.0625g of one gram of radium-226 will remain unchanged after four half-lives.
Answer:
0.0625 g
Step-by-step explanation:
Given : The half-life of radium-226 is 1620 years.
Formula of half life:
[tex]P(t) =P_0(\frac{1}{2})^\frac{t}{1620}[/tex]
So. [tex]P_0[/tex] = initial amount
P(t)= mass of radioactive material at time interval (t)
1 half life = 1620 years
4 half lives = 4 * 1620
So, t = 4 * 1620
Substituting the values :
[tex]P(t) =1 (\frac{1}{2})^\frac{4\times 1620 }{1620}[/tex]
[tex]P(t) = (\frac{1}{2})^4[/tex]
[tex]P(t) = \frac{1}{16}[/tex]
[tex]P(t) =0.0625[/tex]
Hence 0.0625 g of one gram of radium-226 will remain unchanged after four half-lives
Option C is correct.