Respuesta :

The sequence is a geometric sequence with a common ratio of 2. since the common ratio is greater than 1, the sequence diverges.

Answer:

Diverges

Step-by-step explanation:

The given sequence is:

11, 22, 44, 88,.....

Now, [tex]a_{1}=11=2^0{\times}11[/tex],

[tex]a_{2}=22=2^1{\times}11[/tex],

[tex]a_{3}=44=2^2{\times}11[/tex],

[tex]a_{4}=88=2^3{\times}11[/tex]

Thus,the nth term will be: [tex]a_{n}=2^{n-1}{\times}11[/tex].

Now, as [tex]\lim_{n \to \infty} a_n[/tex], then

[tex]\lim_{n \to \infty} a_n=2^{n-1}{\times}11=+{\infty}[/tex]

Since, as [tex]n{\rightarrow}{\infty}[/tex], [tex]a_{n}{\rightarrow}+{\infty}[/tex], thus the given sequence diverges.