Respuesta :
Answer:
We know that,
[tex]→ \int {e}^{x} [f(x) + f'(x)]dx = {e}^{x} f(x) + C \\ →\int {e}^{x} [ \sin(x) + \cos(x) ]dx = {e}^{x} \sin(x) + C[/tex]
- e^x{sin(x)}+C is the right answer.
Answer:
We know that,
[tex]→ \int {e}^{x} [f(x) + f'(x)]dx = {e}^{x} f(x) + C \\ →\int {e}^{x} [ \sin(x) + \cos(x) ]dx = {e}^{x} \sin(x) + C[/tex]