Respuesta :
Correct answer is D.
AP = PC
BP = PD
[tex]\angle{BPA}=\angle{DPC}[/tex]
[tex]\triangle{ABP} \cong \triangle{DPC} \Rightarrow AB=CD[/tex]
AP = PC
BP = PD
[tex]\angle{APD}=\angle{CPB}[/tex]
[tex]\triangle{APD} \cong \triangle{CPB} \Rightarrow AD=CB[/tex]
The opposite sides of quadrilateral ABCD are equal. Therefore, quadrilateral ABCD is a parallelogram.
AP = PC
BP = PD
[tex]\angle{BPA}=\angle{DPC}[/tex]
[tex]\triangle{ABP} \cong \triangle{DPC} \Rightarrow AB=CD[/tex]
AP = PC
BP = PD
[tex]\angle{APD}=\angle{CPB}[/tex]
[tex]\triangle{APD} \cong \triangle{CPB} \Rightarrow AD=CB[/tex]
The opposite sides of quadrilateral ABCD are equal. Therefore, quadrilateral ABCD is a parallelogram.