Respuesta :

given the expression: [tex]5^{ \frac{1}{3}} [/tex]

Applying the indices law ⇒ [tex]a^{ \frac{m}{n}}= (\sqrt[n]{a} )^m [/tex]

[tex]5^{ \frac{1}{3}}= (\sqrt[3]{5}})^1= \sqrt[3]{5} [/tex]⇒ This is the radical expression

Answer:

the radical expression of [tex](5)^\left (1/3 \right)[/tex] is, [tex](\sqrt[3]{5} )[/tex]

Step-by-step explanation:

An algebraic expression that contains radicals is called radical expression.

to simplify this expression we use product and quotient rules to simply.

Simplify: [tex](5)^\left (1/3 \right)[/tex]

Use :  [tex]\sqrt[n]{a^m}=a^\left ( m/n \right )[/tex]

[tex](5)^\left (1/3 \right)[/tex]=[tex](\sqrt[3]{5} )[/tex]            [use quotient rule]

Therefore, the radical expression of [tex](5)^\left (1/3 \right)[/tex] is,  [tex](\sqrt[3]{5} )[/tex]