Respuesta :
given the expression: [tex]5^{ \frac{1}{3}} [/tex]
Applying the indices law ⇒ [tex]a^{ \frac{m}{n}}= (\sqrt[n]{a} )^m [/tex]
[tex]5^{ \frac{1}{3}}= (\sqrt[3]{5}})^1= \sqrt[3]{5} [/tex]⇒ This is the radical expression
Applying the indices law ⇒ [tex]a^{ \frac{m}{n}}= (\sqrt[n]{a} )^m [/tex]
[tex]5^{ \frac{1}{3}}= (\sqrt[3]{5}})^1= \sqrt[3]{5} [/tex]⇒ This is the radical expression
Answer:
the radical expression of [tex](5)^\left (1/3 \right)[/tex] is, [tex](\sqrt[3]{5} )[/tex]
Step-by-step explanation:
An algebraic expression that contains radicals is called radical expression.
to simplify this expression we use product and quotient rules to simply.
Simplify: [tex](5)^\left (1/3 \right)[/tex]
Use : [tex]\sqrt[n]{a^m}=a^\left ( m/n \right )[/tex]
[tex](5)^\left (1/3 \right)[/tex]=[tex](\sqrt[3]{5} )[/tex] [use quotient rule]
Therefore, the radical expression of [tex](5)^\left (1/3 \right)[/tex] is, [tex](\sqrt[3]{5} )[/tex]