Respuesta :

Answer:

[tex]\dfrac{I_2}{I_1}=\dfrac{32}{1}[/tex]

Explanation:

The momentum of inertia of the solid sphere is :

[tex]I_1=\dfrac{2}{5}mr^2[/tex]

m is the mass of solid sphere

r is the radius of sphere

Since, [tex]m=\rho V[/tex]

[tex]m=\dfrac{4\pi r^3\rho }{3}[/tex]

[tex]I_1=\dfrac{2}{5}r^2\dfrac{4\pi r^3\rho }{3}[/tex]........................(1)

Let r' is the radius of second sphere such that, r' = 2r. New moment of inertia is given by :

[tex]I_2=\dfrac{2}{5}mr'^2[/tex]

[tex]I_2=\dfrac{2}{5}m(2r)'^2[/tex]

Similarly,

[tex]I_2=\dfrac{2}{5}r'^2\dfrac{4\pi r'^3\rho }{3}[/tex].

[tex]I_2=\dfrac{2}{5}(2r)^2\dfrac{4\pi (2r)^3\rho }{3}[/tex]........................(2)

Dividing equation (1) and (2) as :

[tex]\dfrac{I_2}{I_1}=\dfrac{2^5}{1}[/tex]

[tex]\dfrac{I_2}{I_1}=\dfrac{32}{1}[/tex]

So, the ratio of their moments off inertia is 32:1

The ratio of the moments of inertia of the two solid steel spheres,

I₂ : I₁ = 32 : 1

[tex]\texttt{ }[/tex]

Further explanation

Given:

radius of sphere 1 = R₁ = R

radius of sphere 2 = R₂ = 2R

Asked:

ratio of the moments of inertia = I₂ : I₁ = ?

Solution:

We will use moment of inertia for sphere as follows:

[tex]I_2 : I_1 = \frac{2}{5} m_2 (R_2)^2 : \frac{2}{5} m_1 (R_1)^2[/tex]

[tex]I_2 : I_1 = \frac{2}{5} \rho V_2 (R_2)^2 : \frac{2}{5} \rho V_1 (R_1)^2[/tex]

[tex]I_2 : I_1 = V_2 (R_2)^2 : V_1 (R_1)^2[/tex]

[tex]I_2 : I_1 = [\frac{4}{3} \pi (R_2)^3] (R_2)^2 : [\frac{4}{3} \pi (R_1)^3] (R_1)^2[/tex]

[tex]I_2 : I_1 = (R_2)^5 : (R_1)^5[/tex]

[tex]I_2 : I_1 = (2R)^5 : (R)^5[/tex]

[tex]I_2 : I_1 = 32R^5 : R^5[/tex]

[tex]I_2 : I_1 = 32 : 1[/tex]

[tex]\texttt{ }[/tex]

Conclusion:

The ratio of the moments of inertia, I₂ : I₁ = 32 : 1

[tex]\texttt{ }[/tex]

Learn more

  • Impacts of Gravity : https://brainly.com/question/5330244
  • Effect of Earth’s Gravity on Objects : https://brainly.com/question/8844454
  • The Acceleration Due To Gravity : https://brainly.com/question/4189441
  • Moment of Inertia of Four Small Spheres : https://brainly.com/question/6760068

[tex]\texttt{ }[/tex]

Answer details

Grade: High School

Subject: Physics

Chapter: Circular Motion

Ver imagen johanrusli