Answer:
the average rate of change is equal to [tex]0[/tex]
Step-by-step explanation:
we have
[tex]f(x)=x^{3}-3x^{2}-x+3[/tex] -----> a cubic function
For [tex]x=-1[/tex]
The value of f)x) is equal to
[tex]f(-1)=0[/tex] -----> see the graph
For [tex]x=3[/tex]
The value of f(x) is equal to
[tex]f(3)=0[/tex] -----> see the graph
so
we know that
the average rate of change using the graph is equal to
[tex]\frac{f(b)-f(a)}{b-a}[/tex]
In this problem we have
[tex]f(a)=f(-1)=0[/tex]
[tex]f(b)=f(3)=0[/tex]
[tex]a=-1[/tex]
[tex]b=3[/tex]
Substitute
[tex]\frac{0-0}{3+1}=0[/tex]