Respuesta :

Switch y and x: x =16y^2 + 1
Solve for y: x-1=16y^2
16y =+-√(x-1)
y =+-√(x-1)/16

Answer:

The inverse of the equation is [tex]f^{-1}(x)=\pm\sqrt{\frac{x-1}{16}}[/tex]                

Step-by-step explanation:

Given : Equation [tex]y=16x^2+1[/tex]

To find : The inverse of the equation ?

Solution :

Equation [tex]y=16x^2+1[/tex]

To find the inverse we interchange the value of x and y,

[tex]x=16y^2+1[/tex]

Now, solve for y

[tex]16y^2=x-1[/tex]

Divide by 16 both side,

[tex]y^2=\frac{x-1}{16}[/tex]

Taking root both side,

[tex]y=\pm\sqrt{\frac{x-1}{16}}[/tex]

[tex]f^{-1}(x)=\pm\sqrt{\frac{x-1}{16}}[/tex]

Therefore, The inverse of the equation is [tex]f^{-1}(x)=\pm\sqrt{\frac{x-1}{16}}[/tex]