Answer:
[tex]Average\ Rate = \frac{104}{3}[/tex]
Step-by-step explanation:
Given
See attachment for table
Required
Determine the average rate of change over: 4≤x≤7.
Average rate of change is calculated as:
[tex]Average\ Rate = \frac{f(b) - f(a)}{b - a}[/tex]
Where:
[tex]a=4[/tex]
[tex]b = 7[/tex]
So:
[tex]Average\ Rate = \frac{f(b) - f(a)}{b - a}[/tex]
[tex]Average\ Rate = \frac{f(7) - f(4)}{7 - 4}[/tex]
[tex]Average\ Rate = \frac{f(7) - f(4)}{3}[/tex]
From that table:
f(4) =
f(7) =
So:
[tex]Average\ Rate = \frac{f(7) - f(4)}{3}[/tex]
[tex]Average\ Rate = \frac{108-4}{3}[/tex]
[tex]Average\ Rate = \frac{104}{3}[/tex]