Answer:
[tex]C = (\frac{33}{5},\frac{19}{5})[/tex]
Step-by-step explanation:
Given
[tex]A = (1,3)[/tex]
[tex]B = (8,4)[/tex]
[tex]AC : BC = 4 : 1[/tex]
Required
Determine the coordinates of C
To do this, we make use of:
[tex]C = (\frac{nx_1 + mx_2}{n+m},\frac{ny_1 + my_2}{n+m})[/tex]
Where:
[tex]A = (1,3)[/tex] ---- [tex](x_1,y_1)[/tex]
[tex]B = (8,4)[/tex] ---- [tex](x_2,y_2)[/tex]
[tex]m:n = 4 : 1[/tex]
So:
[tex]C = (\frac{1 * 1 + 4*8}{1+4},\frac{1*3 + 4*4}{1+4})[/tex]
[tex]C = (\frac{33}{5},\frac{19}{5})[/tex]