Given:
The angles of a quadrilateral are x°, (x+5)°, (2x-25)° and (x+10)°.
To find:
The value of x.
Solution:
We know that the sum of all interior angles of a quadrilateral is 360°. So,
[tex]x^\circ+(x+5)^\circ+(2x-25)^\circ+(x+10)^\circ=180^\circ[/tex]
[tex](5x-10)^\circ=180^\circ[/tex]
It can be written as
[tex](5x-10)=180[/tex]
[tex]5x=180+10[/tex]
[tex]5x=190[/tex]
Divide both sides by 5.
[tex]x=\dfrac{190}{5}[/tex]
[tex]x=38[/tex]
Therefore, the value of x is 38.