Answer:
(a) [tex]3a^4 - 11a^2b^2 -2b^4[/tex]
(b) [tex]3a^4 - 11a^2b^2 -2b^4= 2[/tex]
Step-by-step explanation:
Given
[tex](a^4 - 6a^2b^2+ b^4) - (-2a^4+5a^2b^2+ 3b^4)[/tex]
Solving (a): Simplify
[tex](a^4 - 6a^2b^2+ b^4) - (-2a^4+5a^2b^2+ 3b^4)[/tex]
Open brackets
[tex]a^4 - 6a^2b^2+ b^4 +2a^4-5a^2b^2- 3b^4[/tex]
Collect Like Terms
[tex]a^4 +2a^4- 6a^2b^2-5a^2b^2+ b^4 - 3b^4[/tex]
Simplify Like Terms
[tex]3a^4 - 11a^2b^2 -2b^4[/tex]
Solving (b): Simplify when a = 2 and b = -1
[tex]3a^4 - 11a^2b^2 -2b^4[/tex]
[tex]3*(2)^4 - 11*(2^2)*(-1)^2 -2*(-1)^4[/tex]
[tex]3 * 16 - 11 * 4 * 1 - 2 * 1[/tex]
[tex]48 - 44 - 2[/tex]
[tex]= 2[/tex]
Hence:
[tex]3a^4 - 11a^2b^2 -2b^4= 2[/tex]