Respuesta :
Answer:
(a)
i) [tex]V=12.6m/s[/tex]
ii) [tex]V=12.06m/s[/tex]
iii) [tex]V=12.006m/s[/tex]
(b)
[tex]V = 10m/s[/tex]
Step-by-step explanation:
Given
[tex]s = 6t^2 + 4[/tex]
Solving (a): Average velocity between t = 1 and t = 1 + h
When t = 1
[tex]t_1 = 1[/tex]
[tex]s_1 = 6t^2 + 4 = 6 * 1^2 + 4 = 6 + 4 =10[/tex]
i) h = 0.1
When t = 1 + h
[tex]t_2 = 1 + 0.1 = 1.1[/tex]
[tex]s_2= 6t^2 + 4 = 6 * (1.1)^2 + 4 = 11.26[/tex]
Average velocity is then calculated as:
[tex]V = \frac{s_2 - s_1}{t_2 - t_1}[/tex]
[tex]V = \frac{11.26 - 10}{1.1- 1} = \frac{1.26}{0.1} = 12.6[/tex]
[tex]V=12.6m/s[/tex]
ii) h = 0.01
When t = 1 + h
[tex]t_2 = 1 + 0.01 = 1.01[/tex]
[tex]s_2= 6t^2 + 4 = 6 * (1.01)^2 + 4 = 10.1206[/tex]
Average velocity is then calculated as:
[tex]V = \frac{s_2 - s_1}{t_2 - t_1}[/tex]
[tex]V = \frac{10.1206 - 10}{1.01- 1} = \frac{0.1206}{0.01} = 12.06[/tex]
[tex]V=12.06m/s[/tex]
ii) h = 0.001
When t = 1 + h
[tex]t_2 = 1 + 0.001 = 1.001[/tex]
[tex]s_2= 6t^2 + 4 = 6 * (1.001)^2 + 4 = 10.012006[/tex]
Average velocity is then calculated as:
[tex]V = \frac{s_2 - s_1}{t_2 - t_1}[/tex]
[tex]V = \frac{10.012006 - 10}{1.001- 1} = \frac{0.012006 }{0.001} = 12.006[/tex]
[tex]V=12.006m/s[/tex]
Solving (b): Instantaneous velocity at t = 1
When t = 1
[tex]t = 1[/tex]
[tex]s = 6t^2 + 4 = 6 * 1^2 + 4 = 6 + 4 =10[/tex]
Velocity is:
[tex]V = \frac{s}{t}[/tex]
[tex]V = \frac{10}{1}[/tex]
[tex]V = 10m/s[/tex]