Answer:
[tex]VYX=84.3in[/tex]
Step-by-step explanation:
Given
[tex]YV = 28in[/tex]
[tex]\angle WZX = 15^\circ[/tex]
See attachment
Required
Determine the length of [tex]VYX[/tex]
First, calculate the major angle VZX
[tex]\theta = \angle VZX = 360 - \angle WZX[/tex]
[tex]\theta = \angle VZX = 360 - 15[/tex]
[tex]\theta = \angle VZX = 345[/tex]
[tex]\theta = 345[/tex]
The length of arc VYX, is:
[tex]L=\frac{\theta}{360} * 2\pi r[/tex]
Where
[tex]r = \frac{1}{2} * Diameter[/tex]
[tex]r = \frac{1}{2} * YV[/tex]
[tex]r = \frac{1}{2} * 28[/tex]
[tex]r = 14[/tex]
So:
[tex]L=\frac{\theta}{360} * 2\pi r[/tex]
[tex]L=\frac{345}{360} * 2 * \frac{22}{7} *14[/tex]
[tex]L=\frac{345}{360} * 2 * 22 *2[/tex]
[tex]L=\frac{345* 2 * 22 *2}{360}[/tex]
[tex]L=\frac{30360}{360}[/tex]
[tex]L=84.3in[/tex]
Hence, the length of VYX is:
[tex]VYX=84.3in[/tex]