Answer:
The future value is $12308.99
Step-by-step explanation:
Since Sherry Kardell is paying at the beginning of each year, therefore the annuity is due.
So,
[tex]A = (1+r)\times P\times \left [ \frac{(1+r)^{n}-1}{r} \right ][/tex]
[tex]A = (1+0.1)\times400\times \left [ \frac{(1+0.1)^{14}-1}{0.1} \right ][/tex]
[tex]A = (1.1)\times400\times \left [ \frac{(1.1)^{14}-1}{0.1} \right ][/tex]
[tex]A = 440\times \left [ \frac{3.797-1}{0.1} \right ][/tex]
[tex]A = 440\times \left [ \frac{2.797}{0.1} \right ][/tex]
[tex]A =12308.99[/tex]
The future value is $12308.99