If [tex]\frac{dy}{dx} = cos^{2} (\frac{\pi *y}{4})[/tex] and y = 1 when x = 0, then find the value of x when y = 3.
A. 1/8
B. -π/8
C. -8/π

Respuesta :

The ODE

[tex]\dfrac{\mathrm dy}{\mathrm dx}=\cos^2\left(\dfrac{\pi y}4\right)[/tex]

is separable, as

[tex]\dfrac{\mathrm dy}{\cos^2\left(\frac{\pi y}4\right)}=\mathrm dx[/tex]

[tex]\sec^2\left(\dfrac{\pi y}4\right)\,\mathrm dy=\mathrm dx[/tex]

Integrate both sides:

[tex]\displastyle\int\sec^2\left(\dfrac{\pi y}4\right)\,\mathrm dy=\int\mathrm dx[/tex]

In the left integral, substitute u = πy/4 and du = π/4 dy :

[tex]\displastyle\frac4\pi\int\sec^2(u)\,\mathrm du=\int\mathrm dx[/tex]

[tex]\dfrac4\pi \tan(u)=x+C[/tex]

[tex]\dfrac4\pi\tan\left(\dfrac{\pi y}4\right)=x+C[/tex]

Given that y = 1 when x = 0, we have

[tex]\dfrac4\pi\tan\left(\dfrac\pi4\right)=C\implies C=\dfrac4\pi[/tex]

since tan(π/4) = 1. So the ODE has a particular solution of

[tex]\dfrac4\pi\tan\left(\dfrac{\pi y}4\right)=x+\dfrac4\pi[/tex]

or

[tex]\tan\left(\dfrac{\pi y}4\right)=\dfrac{\pi x}4+1[/tex]

Now when y = 3, we have

[tex]\tan\left(\dfrac{3\pi}4\right)=\dfrac{\pi x}4+1[/tex]

[tex]-1=\dfrac{\pi x}4+1[/tex]

[tex]-2=\dfrac{\pi x}4[/tex]

[tex]-8=\pi x[/tex]

[tex]x=-\dfrac8\pi[/tex]

making the answer C.