Respuesta :

Answer:

the domain of f(x) is set of all real numbers except 3/2

Step-by-step explanation:

Since the denominator cannot equal 0,  2x - 3 ≠ 0

                                                                        2x ≠ 3

                                                                          x ≠ 3/2

Any real number can replace x in the numerator.  

So, the domain of f(x) is all real numbers except 3/2

The domain of the given function is required.

The domain is (-∞,3/2),(3/2,∞)

Domain of a function

The given function is [tex]f(x)=\dfrac{x-5}{2x-3}[/tex]

The domain of a function are the values of x for which the given function is defined.

The function is undefined when [tex]x=\dfrac{3}{2}[/tex]

[tex]f(3/2)=\dfrac{\dfrac{3}{2}-5}{2\times \dfrac{3}{2}-3}=\infty[/tex]

So, [tex]x\neq \dfrac{3}{2}[/tex]

The domain is [tex]\left(-\infty,\dfrac{3}{2}\right),\left(\dfrac{3}{2},\infty\right)[/tex]

Learn more about domain of a function:

https://brainly.com/question/1942755