Let the two primes p = 41 and q = 17 be given as set-up parameters for RSA. 1) Which of the parameters e1 = 32, e2 = 49 is a valid RSA exponent (i.e., is a valid public key, e1 or e2)? Justify your choice. 2) Compute the corresponding private key Kpr = (p, q, d). Use the extended Euclidean algorithm for the inversion and point out every calculation step.

Respuesta :

Solution :

It is given in the question that :

Two prime numbers : p = 41

                                    q = 17

Therefore, n = p x q

                     = 41 x 17

                    = 697

Now we know that :

[tex]$\phi (n) = (p-1)\times (q-1)$[/tex]

[tex]$\phi (n) = (41-1)\times (17-1)$[/tex]

       = 40 x 16

      = 640

a). For the public key [tex]$\text{e gcd(e, }\phi(n))=1$[/tex]

Now the [tex]$\text{gcd}(e_1,\phi(n))=1$[/tex] implies [tex]$\text{gcd}(32,640)=1$[/tex]

But this is false as the [tex]$\text{gcd}(32,640)! = 1$[/tex]

Therefore the public key will prefer [tex]$e_2$[/tex] , that is 49.

b). We have to find the private key d. So we know that

    [tex]$e \times d = 1 \text{ mod } \phi(n)$[/tex]

    [tex]$49 \times d = 1 \text{ mod } 640$[/tex]  

Therefore the value of d = 209

c). The encryption of the message M, we will use the relation:

[tex]$C=M^e \text{ mod } n$[/tex] ;  here "C" is cipher text

Given M = 26 and we know that [tex]$e=49$[/tex] and [tex]$n=697$[/tex]

Therefore, [tex]$C=26^{49} \text{ mod }697$[/tex]

                     = 468

Thus the cipher text for the plain text 26 is 468.

d). For the decryption of message C,

    [tex]$M=C^d \text{ mod }n$[/tex] (here C = cipher text, M = plain text)

    Given [tex]$ C=513$[/tex]. And the value of d is 209 and n is 697

    Therefore, [tex]$M=513^{209}\text{ mod } 697$[/tex]

                            [tex]$=326$[/tex]

Therefore, the plain text for cipher text 513 is 326.