Respuesta :
Solution :
Let Asian treats makes [tex]$x_1$[/tex] number of dumplings and [tex]$x_2$[/tex] number of spring rolls to maximize the profit.
Meat Spice starch
Dumplings 5 2
Spring rolls 5 4
Since there are 25 pounds of meat and 16 pounds of spice starch.
Therefore, [tex]$5x_1 + 5x_2 \leq 25$[/tex]
and [tex]$25x_1 + 4x_2 \leq 16$[/tex]
So profit per batch is
[tex]$z= x_1 + 5x_2$[/tex]
Therefore, the LPP is
Maximize [tex]$z= x_1 + 5x_2$[/tex]
subject to the constraints
[tex]$x_1+x_2 \leq 5$[/tex]
[tex]$x_1+2x_2 \leq 8$[/tex] , [tex]$x_1,x_2 \geq 0$[/tex]
From the graph, the feasible region is OAPD
z at 0, [tex]$z_{(0,0)}$[/tex] = 0
z at A, [tex]$z_{(5,0)}$[/tex] = 5 + 5(0)
= 5
z at P, [tex]$z_{(2,3)}$[/tex] = 2 + 5(3)
= 17
z at D, [tex]$z_{(0,4)}$[/tex] = 0 + 5(4)
= 20
Therefore, the maximum profit at D i.e. when [tex]$x_1 = 0$[/tex] and [tex]$x_2 = 4$[/tex].
So Asian Treats makes 0 dumpling and 4 spring rolls per latch to maximize the profit, and the profit is $ 20 per latch.
To produce 4 spring roll, Asian Treat needs 4 x 5 = 20 pound meat and 4 x 4 = 16 pound spice starch.
∴ The unused meat = 25 - 20
= 5 pounds
