Answer:
diameter of the sprue at the bottom is 1.603 cm
Explanation:
Given data;
Flow rate, Q = 400 cm³/s
cross section of sprue: Round
Diameter of sprue at the top [tex]d_{top}[/tex] = 3.4 cm
Height of sprue, h = 20 cm = 0.2 m
acceleration due to gravity g = 9.81 m/s²
Calculate the velocity at the sprue base
[tex]V_{base}[/tex] = √2gh
we substitute
[tex]V_{base}[/tex] = √(2 × 9.81 m/s² × 0.2 m )
[tex]V_{base}[/tex] = 1.98091 m/s
[tex]V_{base}[/tex] = 198.091 cm/s
diameter of the sprue at the bottom will be;
Q = AV = (π[tex]d_{bottom}^2[/tex]/4) × [tex]V_{base}[/tex]
[tex]d_{bottom}[/tex] = √(4Q/π[tex]V_{base}[/tex])
we substitute our values into the equation;
[tex]d_{bottom}[/tex] = √(4(400 cm³/s) / (π×198.091 cm/s))
[tex]d_{bottom}[/tex] = 1.603 cm
Therefore, diameter of the sprue at the bottom is 1.603 cm