Respuesta :

Answer:

BD = 2.4 units

AB = 4 units

Step-by-step explanation:

using the Pythagorean theorem:

3²-1.8² = BD²

BD² = 5.76

BD =  2.4

2.4²+3.2² = AB²

AB² = 16

AB = 4

This  has to be determined by pythagorian theorem. Hence the value of AB= 4 units and BD= 2.4 units.

Given: AD = 3.2 units

          BC  = 3 units

          CD  = 1.8 units

Find : AB =? units

          BD=? units

As we know that ,

By the formula of  pythagorian theorem,

Let be a ΔABC,

                     [tex]\bold{(AB)^{2} = (BC)^{2} +(AC)^{2}}[/tex]

From the above formula now  determined  the value of AB and BD,

Firstly , find the value of BD

In ΔBDC, by applying pythagaorian theorem,

[tex]\bold{(BC)^{2} = (BD)^{2} +(DC)^{2}}[/tex]                                                         ...(1)

Here, BC  = 3 units and CD = 1.8 units

Now put the values of  BC and CD  in (1),

[tex]\begin{aligned}(3)^{2} &=(BD)^{2}+(1.8)^{2}\\9&=(BD)^{2}+3.24\\9-3.24&=(BD)^{2}\\5.76&=(BD)^{2}\\\sqrt{5.76} &=BD\\\bold{BD&= 2.4}\:units\end{aligned}[/tex]                                                         ...(2)

Now find the value of AB,

In ΔABD, by applying pythagorian theorem,

[tex]\bold{(AB)^{2}=(AD)^{2} + (BD)^{2} }[/tex]                                                       ...(3)

Here, AD=3.2 and from (2) BD=2.4

By putting values in (3) ,

[tex]\begin{aligned}(3.2)^{2} +(2.4)^{2}&=(AB)^{2}\\10.24+5.76&=(AB)^{2}\\16&=(AB)^{2}\\\sqrt{16} &=AB\\\bold{AB&= 4}\:units\end{aligned}[/tex]

Therefore,the values of AB=4 units and BD= 2.4 units.

For further details, please prefer this link:

https://brainly.com/question/343682