Enter an equation for the function that includes the points.Give your answer in a(b)x. In the event that a=1 , give your answer in form (b)x. (2,2/3) and 3,5/9 The equation is f(x)=

Respuesta :

Answer:

[tex]f(x) = \frac{24}{25} * \frac{5}{6}^x[/tex]

Step-by-step explanation:

Given

[tex](x_1,y_1) = (2,\frac{2}{3})[/tex]

[tex](x_2,y_2) = (3,\frac{5}{9})[/tex]

Required

Write the equation of the function [tex]f(x) = ab^x[/tex]

Express the function as:

[tex]y = ab^x[/tex]

In: [tex](x_1,y_1) = (2,\frac{2}{3})[/tex]

[tex]y = ab^x[/tex]

[tex]\frac{2}{3} = a * b^2[/tex] --- (1)

In [tex](x_2,y_2) = (3,\frac{5}{9})[/tex]

[tex]y = ab^x[/tex]

[tex]\frac{5}{9} = a * b^3[/tex] --- (2)

Divide (2) by (1)

[tex]\frac{5}{9}/\frac{2}{3} = \frac{a*b^3}{a*b^2}[/tex]

[tex]\frac{5}{9}/\frac{2}{3} = b[/tex]

[tex]\frac{5}{9}*\frac{3}{2} = b[/tex]

[tex]\frac{5}{3}*\frac{1}{2} = b[/tex]

[tex]\frac{5}{6} = b[/tex]

[tex]b = \frac{5}{6}[/tex]

Substitute 5/6 for b in (1)

[tex]\frac{2}{3} = a * b^2[/tex]

[tex]\frac{2}{3} = a * \frac{5}{6}^2[/tex]

[tex]\frac{2}{3} = a * \frac{25}{36}[/tex]

[tex]a = \frac{2}{3} * \frac{36}{25}[/tex]

[tex]a = \frac{2}{1} * \frac{12}{25}[/tex]

[tex]a = \frac{24}{25}[/tex]

The function: [tex]f(x) = ab^x[/tex]

[tex]f(x) = \frac{24}{25} * \frac{5}{6}^x[/tex]