Answer:
[tex]V = \frac{99}{7} x^{9}y^{-6}[/tex]
Step-by-step explanation:
Given
[tex]V = \frac{4}{3}\pi r^3[/tex]
Required
Find V when
[tex]r = \frac{3}{2}x^3y^{-2[/tex]
Substitute [tex]\frac{3}{2}x^3y^{-2[/tex] for r in [tex]V = \frac{4}{3}\pi r^3[/tex]
[tex]V = \frac{4}{3}\pi * (\frac{3}{2}x^3y^{-2})^3[/tex]
Open bracket
[tex]V = \frac{4}{3}\pi * \frac{3}{2}^3 * x^{3*3}y^{-2*3}[/tex]
[tex]V = \frac{4}{3}\pi * \frac{27}{8} * x^{9}y^{-6}[/tex]
Simplify the fractions
[tex]V = \pi * \frac{9}{2} * x^{9}y^{-6}[/tex]
Let
[tex]\pi = \frac{22}{7}[/tex]
So:
[tex]V = \frac{22}{7} * \frac{9}{2} * x^{9}y^{-6}[/tex]
[tex]V = \frac{11}{7} * \frac{9}{1} * x^{9}y^{-6}[/tex]
[tex]V = \frac{99}{7} * x^{9}y^{-6}[/tex]
[tex]V = \frac{99}{7} x^{9}y^{-6}[/tex]