The volume of a sphere can be determined by the formula V = 4/3 πr^3, where r is the radius. What is the volume of a sphere with radius 3/2x^3y^–2 in terms of x and y?

Respuesta :

Answer:

[tex]V = \frac{99}{7} x^{9}y^{-6}[/tex]

Step-by-step explanation:

Given

[tex]V = \frac{4}{3}\pi r^3[/tex]

Required

Find V when

[tex]r = \frac{3}{2}x^3y^{-2[/tex]

Substitute [tex]\frac{3}{2}x^3y^{-2[/tex] for r in [tex]V = \frac{4}{3}\pi r^3[/tex]

[tex]V = \frac{4}{3}\pi * (\frac{3}{2}x^3y^{-2})^3[/tex]

Open bracket

[tex]V = \frac{4}{3}\pi * \frac{3}{2}^3 * x^{3*3}y^{-2*3}[/tex]

[tex]V = \frac{4}{3}\pi * \frac{27}{8} * x^{9}y^{-6}[/tex]

Simplify the fractions

[tex]V = \pi * \frac{9}{2} * x^{9}y^{-6}[/tex]

Let

[tex]\pi = \frac{22}{7}[/tex]

So:

[tex]V = \frac{22}{7} * \frac{9}{2} * x^{9}y^{-6}[/tex]

[tex]V = \frac{11}{7} * \frac{9}{1} * x^{9}y^{-6}[/tex]

[tex]V = \frac{99}{7} * x^{9}y^{-6}[/tex]

[tex]V = \frac{99}{7} x^{9}y^{-6}[/tex]